Introduction to Computer
Babbage's Difference Engine
Considered by many to be a direct forerunner of the modern computer, the Difference Engine was able to compute mathematical tables. This woodcut shows a small portion of the ingenious machine, which was out designed by Charles Babbage in the 1820s. Although the device did not have a memory, Babbage’s later idea for the Analytical Engine would have been a true, programmable computer if the technology of his time had been able to build it.
THE BETTMANN ARCHIVE
Computer, machine that performs tasks, such as calculations or electronic communication, under the control of a set of instructions called a program. Programs usually reside within the computer and are retrieved and processed by the computer’s electronics. The program results are stored or routed to output devices, such as video display monitors or printers. Computers perform a wide variety of activities reliably, accurately, and quickly.
People use computers in many ways. In business, computers track inventories with bar codes and scanners, check the credit status of customers, and transfer funds electronically. In homes, tiny computers embedded in the electronic circuitry of most appliances control the indoor temperature, operate home security systems, tell the time, and turn videocassette recorders (VCRs) on and off. Computers in automobiles regulate the flow of fuel, thereby increasing gas mileage, and are used in anti-theft systems. Computers also entertain, creating digitized sound on stereo systems or computer-animated features from a digitally encoded laser disc. Computer programs, or applications, exist to aid every level of education, from programs that teach simple addition or sentence construction to programs that teach advanced calculus. Educators use computers to track grades and communicate with students; with computer-controlled projection units, they can add graphics, sound, and animation to their communications (see Computer-Aided Instruction). Computers are used extensively in scientific research to solve mathematical problems, investigate complicated data, or model systems that are too costly or impractical to build, such as testing the air flow around the next generation of aircraft. The military employs computers in sophisticated communications to encode and unscramble messages, and to keep track of personnel and supplies.
Computer System
A typical computer system consists of a central processing unit (CPU), input devices, storage devices, and output devices. The CPU consists of an arithmetic/logic unit, registers, control section, and internal bus. The arithmetic/logic unit carries out arithmetical and logical operations. The registers store data and keep track of operations. The control unit regulates and controls various operations. The internal bus connects the units of the CPU with each other and with external components of the system. For most computers, the principal input device is a keyboard. Storage devices include external floppy disc drives and internal memory boards. Output devices that display data include monitors and printers.
© Microsoft Corporation. All Rights Reserved.
The physical computer and its components are known as hardware. Computer hardware includes the memory that stores data and program instructions; the central processing unit (CPU) that carries out program instructions; the input devices, such as a keyboard or mouse, that allow the user to communicate with the computer; the output devices, such as printers and video display monitors, that enable the computer to present information to the user; and buses (hardware lines or wires) that connect these and other computer components. The programs that run the computer are called software. Software generally is designed to perform a particular type of task—for example, to control the arm of a robot to weld a car’s body, to write a letter, to display and modify a photograph, or to direct the general operation of the computer.
When a computer is turned on it searches for instructions in its memory. These instructions tell the computer how to start up. Usually, one of the first sets of these instructions is a special program called the operating system, which is the software that makes the computer work. It prompts the user (or other machines) for input and commands, reports the results of these commands and other operations, stores and manages data, and controls the sequence of the software and hardware actions. When the user requests that a program run, the operating system loads the program in the computer’s memory and runs the program. Popular operating systems, such as Microsoft Windows and the Macintosh system (Mac OS), have graphical user interfaces (GUIs)—that use tiny pictures, or icons, to represent various files and commands. To access these files or commands, the user clicks the mouse on the icon or presses a combination of keys on the keyboard. Some operating systems allow the user to carry out these tasks via voice, touch, or other input methods.
Inside a Computer Hard Drive
The inside of a computer hard disk drive consists of four main components. The round disk platter is usually made of aluminum, glass, or ceramic and is coated with a magnetic media that contains all the data stored on the hard drive. The yellow armlike device that extends over the disk platter is known as the head arm and is the device that reads the information off of the disk platter. The head arm is attached to the head actuator, which controls the head arm. Not shown is the chassis which encases and holds all the hard disk drive components.
FOTO-WERBUNG/Phototake NYC
To process information electronically, data are stored in a computer in the form of binary digits, or bits, each having two possible representations (0 or 1). If a second bit is added to a single bit of information, the number of representations is doubled, resulting in four possible combinations: 00, 01, 10, or 11. A third bit added to this two-bit representation again doubles the number of combinations, resulting in eight possibilities: 000, 001, 010, 011, 100, 101, 110, or 111. Each time a bit is added, the number of possible patterns is doubled. Eight bits is called a byte; a byte has 256 possible combinations of 0s and 1s. See also Expanded Memory; Extended Memory.
A byte is a useful quantity in which to store information because it provides enough possible patterns to represent the entire alphabet, in lower and upper cases, as well as numeric digits, punctuation marks, and several character-sized graphics symbols, including non-English characters such as p. A byte also can be interpreted as a pattern that represents a number between 0 and 255. A kilobyte—1,024 bytes—can store about 1,000 characters; a megabyte can store about 1 million characters; a gigabyte can store about 1 billion characters; and a terabyte can store about 1 trillion characters. Computer programmers usually decide how a given byte should be interpreted—that is, as a single character, a character within a string of text, a single number, or part of a larger number. Numbers can represent anything from chemical bonds to dollar figures to colors to sounds.
The physical memory of a computer is either random access memory (RAM), which can be read or changed by the user or computer, or read-only memory (ROM), which can be read by the computer but not altered in any way. One way to store memory is within the circuitry of the computer, usually in tiny computer chips that hold millions of bytes of information. The memory within these computer chips is RAM. Memory also can be stored outside the circuitry of the computer on external storage devices, such as magnetic floppy disks, which can store about 2 megabytes of information; hard drives, which can store gigabytes of information; compact discs (CDs), which can store up to 680 megabytes of information; and digital video discs (DVDs), which can store 8.5 gigabytes of information. A single CD can store nearly as much information as several hundred floppy disks, and some DVDs can hold more than 12 times as much data as a CD. |